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Hole spin relaxation in �001� strained asymmetric Si /Si0.7Ge0.3 �Ge /Si0.3Ge0.7� quantum wells is investi-
gated in the situation with only the lowest hole subband being relevant. The effective Hamiltonian of the lowest
hole subband is obtained by the subband Löwdin perturbation method in the framework of the six-band
Luttinger k ·p model with sufficient basis functions included. The lowest hole subband in Si/SiGe quantum
wells is light-holelike with the Rashba spin-orbit coupling term depending on momentum both linearly and
cubically while that in Ge/SiGe quantum wells is a heavy-hole state with the Rashba spin-orbit coupling term
depending on momentum only cubically. The hole spin relaxation is investigated by means of the fully
microscopic kinetic spin Bloch equation approach with all the relevant scatterings considered. It is found that
the hole-phonon scattering is very weak, which makes the hole-hole Coulomb scattering become very impor-
tant. The hole system in Si/SiGe quantum wells is generally in the strong scattering limit while that in Ge/SiGe
quantum wells can be in either the strong or the weak scattering limit. The Coulomb scattering leads to a peak
in both the temperature- and hole-density dependences of spin relaxation time in Si/SiGe quantum wells,
located around the crossover between the degenerate and nondegenerate regimes. Nevertheless, the Coulomb
scattering leads to not only a peak but also a valley in the temperature dependence of spin relaxation time in
Ge/SiGe quantum wells. The valley is actually due to the crossover from the weak to strong scattering limit.
The hole-impurity scattering influences the spin relaxation effectively. In the strong �weak� scattering limit, the
spin relaxation time increases �decreases� with increasing impurity density. The spin relaxation time is found to
be on the order of 1�100 ps �0.1�10 ps� in Si/SiGe �Ge/SiGe� quantum wells, for the temperatures, carrier/
impurity densities and gate voltages of our consideration.
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I. INTRODUCTION

In recent years, great efforts have been devoted to the
design/realization of spintronic devices, which employ the
spin degree of freedom in traditional electronics for the sake
of higher power efficiency, higher speed, and also greater
functionality.1–3 Among different kinds of hosts for such de-
vices, Si appears to be a particularly promising one and at-
tracts much attention, partly due to the high possibility of
eliminating hyperfine couplings by isotopic purification and
the well-developed microfabrication technology.4 In fact, the
electron-spin relaxation, which is necessary to be understood
for the device design, has been widely investigated in Si
materials during the last decade. The study on relaxation of
electron-spin qubit in Si quantum dot suggests that the relax-
ation rate can be strongly decreased by adding strain.5 The
electron-spin relaxation in asymmetric n-type Si/SiGe quan-
tum wells �QWs� has been investigated both theoretically6

and experimentally.7,8 It is shown that the electron-spin re-
laxation time can be quite long �on the order of
10−7–10−5 s� �Refs. 6–8� due to the weak Rashba spin-orbit
coupling9 �typically about three orders of magnitude smaller
than that in QW structures based on III–V semiconductors8�.
The electron-spin transport/diffusion in bulk Si with a mag-
netic field perpendicular to both the directions of spin polar-
ization and spin transport/diffusion has also been studied
recently.10 It is revealed that even in the absence of the tra-
ditional D’yakonov-Perel’ �DP� relaxation mechanism,11

there is an obvious spin relaxation along spin transport/
diffusion, as predicted several years ago from a general QW

model without any DP relaxation mechanism but with a mag-
netic field in the Voigt configuration.12 That is also the case
in the symmetric Si/SiGe QWs.13

Although a broad interest has been taken in the electron-
spin relaxation in Si, to our knowledge, the hole spin relax-
ation has been rarely investigated so far. Glavin and Kim
have calculated the spin relaxation of two-dimensional holes
in strained asymmetric Si/SiGe �Ge/SiGe� QWs four years
ago14 and obtained a spin relaxation time of several tens of
picoseconds �several subpicoseconds� in Si/SiGe �Ge/SiGe�
QWs with large-gate voltage �which induces an electric field
at 50–500 kV/cm� at room temperature. However, the results
were obtained by means of the single-particle
approximation15 therefore the effect of the carrier-carrier
Coulomb scattering on spin relaxation, which has been re-
vealed to be important in spin relaxation,16–22 was not in-
cluded. Besides, the nondegenerate perturbation method with
only the lowest unperturbed subband of each hole state con-
sidered as basis function is utilized to calculate the subband
energy spectrum and envelope functions in Ref. 14. How-
ever, as shown later in this paper, only considering the lowest
unperturbed subband is inadequate in converging the calcu-
lation but when more unperturbed subbands are included as
basis functions, the nondegenerate perturbation method fails.
This work is to perform a detailed investigation on hole spin
relaxation in asymmetric Si/SiGe and Ge/SiGe QWs by
means of the fully microscopic kinetic spin Bloch equation
�KSBE� approach16 with all the relevant scatterings included.
Meanwhile, we apply the exact diagonalization method to
obtain the energy spectrum and envelope functions with suf-
ficient unperturbed subbands included. In the KSBE ap-
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proach, the momentum-dependent spin precessions give rise
to the inhomogeneous broadening with which any scattering
�including the Coulomb scattering� leads to an irreversible
spin relaxation.16 This approach has been successfully ap-
plied to study spin dynamics in quantum wire,23,24

QW,12,13,18,25–27 and bulk28 semiconductor structures. The
current work reveals that the Coulomb scattering plays a
much more important role in hole spin relaxation in Si/SiGe
�Ge/SiGe� QWs. It leads to a peak in both the temperature
and density dependences of spin relaxation time in Si/SiGe
QWs, where holes are generally in the strong scattering limit.
Nonetheless, it leads to not only a peak but also a valley in
the temperature dependence of spin relaxation time in Ge/
SiGe QWs, where with the change in temperature the holes
in Ge/SiGe QWs can be in the either strong or weak scatter-
ing limit. Besides, the spin relaxation time can be effectively
influenced by the hole-impurity scattering, which tends to
weaken the effect of the Coulomb scattering mentioned
above with the increase in impurity density.

This paper is organized as follows. In Sec. II the effective
Hamiltonian of the lowest hole subband �we focus on the
situations with only the lowest subband being relevant� in
asymmetric Si/SiGe �Ge/SiGe� QWs is derived. In Sec. III
the KSBEs are constructed and the hole spin relaxation in
Si/SiGe �Ge/SiGe� QWs is investigated. Finally, we conclude
in Sec. IV.

II. EFFECTIVE HAMILTONIAN

We start our investigation from the p-type
SiO2 /Si /Si0.7Ge0.3 �SiO2 /Ge /Si0.3Ge0.7� QWs. The
SiO2 /Si /Si0.7Ge0.3 and SiO2 /Ge /Si0.3Ge0.7 QW structures
are illustrated in Fig. 1. The Si �Ge� layer is �001� � z grown

with a wide width ��10 nm�. The SiO2 layer is assumed to
be an infinite potential barrier. With the valence-band discon-
tinuity at the Si /Si0.7Ge0.3 �Ge /Si0.3Ge0.7� interface
��55 meV��200 meV�� �Ref. 4� ignored due to the large-
gate voltage �inducing an electric field �50 kV /cm� and
wide well width,14 the triangular potential approximation is
adopted14,29,30 and the well width then becomes irrelevant.

Based on the theory of Luttinger-Kohn31,32 and
Bir-Pikus,33 the valence-band structure of the strained QWs
can be described by the 6�6 effective-mass Hamiltonian14,34

H = HL
�0� + HL

��� + H� + V�z�I6. �1�

Here HL�HL
�0�+HL

��� is the Luttinger Hamiltonian31–33 with
HL

�0� corresponding to the part with kx,y =0. H� is the contri-
bution due to the biaxial strain.31–33,35 V�z� is the confining
potential and I6 is the 6�6 unit matrix. The z components of
the subband envelope functions �the x and y components are
plane waves� obtained by solving the eigenequation of
H0=HL

�0�+H�+V�z�I6 are labeled as
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Here l, h, and s represent the light-hole �LH�, heavy-hole
�HH�, and split-off �SO� hole states, respectively, and n is the
subband number. The solution of the envelope functions is
stated in Appendix.

The Löwdin partitioning36 is performed upto
second order in HL

��� on the basis constructed by ���n
��=1,2 ; �=h , l ,s�, to obtain the effective Hamiltonian of
the lowest hole subband.37 Due to the biaxial strain,31–33,35

the lowest subband in Si/SiGe QWs is a LH-like state �LH0�,
which is an admixture of LH and SO hole states, while that
in Ge/SiGe QWs is a pure HH state �HH0�. The effective
Hamiltonian of the lowest hole subband in Si/SiGe �Ge/
SiGe� QWs can be written as14
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FIG. 1. �Color online� Schematics of the �a� SiO2 /Si /Si0.7Ge0.3

QW structure and �b� SiO2 /Ge /Si0.3Ge0.7 QW structure. Two verti-
cal dashed lines in each figure represent the two interfaces. The
solid curves represent the confining potential V�z� with electric field
E=300 kV /cm. The valence-band discontinuities at the
Si /Si0.7Ge0.3 and Ge /Si0.3Ge0.7 interfaces are neglected in the trian-
gular potential approximation. The chain curves with their scale on
the right-hand side of the frame are �a� ��1l0�z��2 and �b� ��1h0�z��2,
respectively, representing the lowest LH and HH distributions in
Si /Si0.7Ge0.3 and Ge /Si0.3Ge0.7 QWs along the z axis.
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Heff
�l,h� = −

	2k2

2m�l,h� −
	

2
� · ��l,h��kx,ky� , �3�

where k is the in-plane momentum, m�l� �m�h�� is the in-plane
effective mass of the lowest light �heavy� hole subband in
Si/SiGe �Ge/SiGe� QWs, � are the Pauli matrices, and ��l�

���h�� is the Rashba term of the LH0 �HH0� subband in
Si/SiGe �Ge/SiGe� QWs. ��l� has both the linear and cubic
dependences on momentum, whereas ��h� has only the cubic
dependence. For the LH0 subband in Si/SiGe QWs,
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For the HH0 subband in Ge/SiGe QWs
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Here A, B, and C are the valence-band parameters, which

relate to the Luttinger parameters �Table I� �1, �2, and
�3 through A=�1, B=2�2, and �3B2+C2=2�3�3. En

���

��=h , l ,s� are the subband energy levels. �nn�
���� and

�nn�
���� are defined as �nn�

����=�−�
+�dz�n

����z��n�
����z� and �nn�

����

=�−�
+�dz�n

����z�
d�n�

����z�
dz . It is noted that in Ref. 14 the coeffi-

cients �, , and � miss the prefactor − 1
2 and meanwhile �

misses the summation over l �i.e., the contribution due to the
higher LH subbands, which is in fact negligibly small�. Un-
like the work by Glavin and Kim14 where the nondegenerate
perturbation method with only the lowest unperturbed sub-
band of each hole state being accounted �refer to Eqs. �3�–�9�
in Ref. 14� is employed in obtaining the subband energy
spectrum En

��� and the envelope functions ���n, we apply the
exact diagonalization method with sufficient unperturbed
subbands �2 �20� for each hole state in Si/SiGe �Ge/SiGe�
QWs� for the sake of convergence. In fact, the calculation
with only the lowest unperturbed subband of each hole state
is inadequate for the convergence. Moreover, the calculation
with more unperturbed subbands included may cause diver-
gence as long as the nondegenerate perturbation method is
utilized. When performing the subband Löwdin partition
method36 to obtain the effective Hamiltonian of the lowest
subband, we choose sufficient envelope functions ���n as
basis functions. For Si/SiGe �Ge/SiGe� QWs, the number of
envelope functions containing ��ln and ��sn is 4 �40� in
total, and the number of envelope functions ��hn is 2 �20�.
The reason that more basis functions are needed for Ge/SiGe
QWs comes from the fact that the couplings between the
hole subbands are stronger than those in the Si/SiGe QWs
�the Luttinger parameters in Ge are much larger than those in
Si but under the strain the energy differences between hole
subbands are comparable in Si/SiGe and Ge/SiGe QWs�.

According to Eqs. �4� and �12�, the in-plane effective
mass of LH0 subband in Si/SiGe QWs m�l� is calculated to be
about 0.27m0 in the whole electric field range under consid-
eration and that of the HH0 subband in Ge/SiGe QWs m�h� is
0.057m0. We plot the energy levels of four subbands in Si/
SiGe QWs �the first and second LH subbands LH0 and LH1,
the first HH subband HH0, and the first SO subband SO0� at
� point in Fig. 2�a� and the spin-orbit coupling coefficients
of the LH0 subband in Si/SiGe QWs ��, �, and � and the
HH0 subband in Ge/SiGe QWs ��� in Fig. 2�b�. As shown in

TABLE I. Material parameters of Si and Ge. The mass density
d, deformation potentials Dac and �op, optical phonon energy 	�op,
and sound velocity vs are taken from Ref. 38. The Luttinger param-
eters �1, �2, and �3 are from Ref. 30.

Material
d

�g /cm3�
Dac

�eV�
�op

�108 eV /cm�
	�op

�eV�
vs

�105 cm /s�

Si 2.33 5.03 8.7 0.063 9.0

Ge 5.32 3.5 7.0 0.037 5.4

�1 �2 �3

Si 4.285 0.339 1.446

Ge 13.38 4.24 5.69
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Fig. 2�a�, a crossing between the LH1 and HH0 subbands
appears at about E=360 kV /cm and an anticrossing be-
tween the LH1 and SO0 subbands appears around
E=500 kV /cm, respectively. It is noted that notwithstanding
the fact that our calculation goes to the infinitesimal electric
field regime in Fig. 2, only the results in the large electric
field regime �i.e., E�50 kV /cm for QWs with well width
�10 nm� are valid �the spin relaxation investigated later is
also in the large electric field regime�, as our model fails in
the small electric field regime due to the disregard of the
discontinuity in the Si/SiGe �Ge/SiGe� interface. In this work
the temperature dependence of band parameters2,39 is not
taken into account due to both the weak temperature depen-
dence of band parameters and the negligible contribution
from the conduction band.34

We also calculate the spin splitting for holes in Si/SiGe
QWs with in-plane kinetic energy being kBT �T=300 K�
along the �100� �solid curve� and �110� �chain curve� direc-
tion in Fig. 3�a�, as done in Ref. 14. The dotted and dashed
curves are taken from Ref. 14, corresponding to the spin
splittings along the �100� and �110� directions, respectively.
It is shown that our results differ from those in Ref. 14.40

We examine our results by further carrying out a calcula-
tion of spin-orbit coupling coefficients/spin splitting with the
envelope functions ���n obtained by the nondegenerate per-
turbation method as that in Ref. 14 �also refer to Appendix of
this paper� but with the spin-orbit coupling coefficients ob-
tained in this work �i.e., Eqs. �9�–�11� and �16��. As a com-

parison, we plot the electric field dependence of � �Eq. �10��
in Fig. 3�b�, where the solid �chain� curve and the dots
�squares� are results from the perturbation and exact diago-
nalization methods, respectively, with the lowest one �two�
unperturbed subband �subbands� of each hole state consid-
ered. We find that when only the lowest unperturbed subband
of each hole state is considered, the perturbation calculation
and our exact diagonalization calculation yield almost the
identical results �compare the solid curve and the dots in Fig.
3�b��. We also find that, as said above, when more unper-
turbed subbands of each hole state are accounted, the nonde-
generate perturbation method may cause divergence in the
spin-orbit coupling coefficients/spin splitting �a divergence
near E=500 kV /cm in the chain curve is observed�. The
divergence is caused by the degeneracy of the LH subband
and the SO subband �refer to Appendix for details� and dis-
appears in the exact diagonalization calculation �see squares
in the figure�. Besides, the large discrepancy between the
results with different number of unperturbed subbands in-
cluded indicates that only considering the lowest subband of
each hole state is inadequate for the convergence of calcula-
tion. As a result, the exact diagonalization calculation with
sufficient unperturbed subbands of each hole state included
is necessary.
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�b� Spin-orbit coupling coefficients 	

2 �, 	

2 �, and 	

2  for LH0 sub-
band in Si/SiGe QWs and 	

2 � for HH0 subband in Ge/SiGe QWs
against the electric field E. The scale of 	

2 � is on the right-hand side
of the frame.

(b)

E (kV/cm)
� 2
Π

(m
e
V

n
m

3
)

50035020050

0

-1

-2

[110]

[100]

(a)

S
p
in

sp
li
tt

in
g

(m
e
V

)

2

1.5

1

0.5

0

FIG. 3. �Color online� �a� Spin splitting for holes with in-plane
kinetic energy being kBT �T=300 K� along the �100� �the solid and
dotted curves� and �110� �the chain and dashed curves� directions in
Si/SiGe QWs. Solid and chain curves: results of our calculation;
dotted and dashed curves: results from Ref. 14. �b� Spin-orbit cou-
pling coefficient 	

2 � calculated with the nondegenerate perturbation
and exact diagonalization methods, respectively. The solid �chain�
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considered.
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III. HOLE SPIN RELAXATION

We perform the fully microscopic KSBE approach16 to
study the hole spin relaxation. The KSBEs constructed by the
nonequilibrium Green’s function method read16

�

�t
�k�t� =

�

�t
�k�t��coh +

�

�t
�k�t��scat �17�

in which �k represent the density matrices of holes.
�
�t�k�t� �coh are the coherent terms describing the coherent spin
precessions due to the effective magnetic fields from the
Rashba term and the Hartree-Fock Coulomb interaction.
�
�t�k�t� �scat stand for the scattering terms, including the
hole-deformation optical/acoustic phonon,38 hole-impurity,
and hole-hole Coulomb scatterings. Expressions of the co-
herent and scattering terms are given in detail in Ref. 27.
What need to be specified are the matrix elements of the
hole-phonon interaction in the scattering terms. The matrix
elements of hole-deformation acoustic phonon scattering
and hole-deformation optical phonon scattering are

�Mac,Q�2=
	Dac

2 Q

2dvs
�I�iqz��2 and �Mop,Q�2=

	�op
2

2d�op
�I�iqz��2, respec-

tively. Here Q= �q ,qz� is the phonon momentum. The
values of mass density d, deformation potentials Dac
and �op, the optical phonon energy 	�op and the sound
velocity vs in Si and Ge are listed in Table I. �I�iqz��2 is the
form factor with I�iqz�=�−�

� �1l0
† �z�eiqzz�1l0�z�dz

= ��0
�l1��z��eiqzz��0

�l1��z��+ ��0
�l2��z��eiqzz��0

�l2��z�� for Si/SiGe
QWs and I�iqz�=�−�

� �1h0
† �z�eiqzz�1h0�z�dz

= ��0
�h��z��eiqzz��0

�h��z�� for Ge/SiGe QWs. By numerically
solving the KSBEs, one can obtain the time evolution of
density matrices and then the spin relaxation time. In the
calculation, the initial spin polarization of holes is set to be
5%.

A. Hole spin relaxation in Si/SiGe QWs

We first study the spin relaxation of the lowest hole sub-
band in Si /Si0.7Ge0.3.QWs E=300 kV /cm unless otherwise
specified. The LH0 holes have a distribution along the z di-
rection as shown in Fig. 1�a� by the chain curve. The spin-
orbit coupling coefficients are 	

2 �=1.33 meV nm,

	
2 �=−0.83, and 	

2 =−0.39 meV nm3, respectively �Fig.
2�b��. Moreover, due to the quite small material parameter B
�or �2� in Si, the linear part of the Rashba term in Si/SiGe
QWs is relatively more important. The main results are plot-
ted in Figs. 4–7, showing the spin relaxation with different
temperatures, carrier/impurity densities and scatterings.

Figure 4 shows the temperature dependence of spin relax-
ation time with different hole densities. The impurity density
is set to be zero. A peak, appearing at a temperature around
the Fermi temperature Tf

h�Ef
h /kB �Ef

h is the hole Fermi en-
ergy. Tf

h�35 K with density Nh=4�1011 cm−2� is observed
except when the hole density is too low. This kind of peak
has been predicted by Zhou et al. in high-mobility n-doped
GaAs QWs �Ref. 18� and later observed by Ruan et al. ex-
perimentally at about Tf

e /2 in the temperature dependence of
electron-spin relaxation.19 Similar peaks have also been pre-
dicted very recently in the temperature dependence of
electron-spin relaxation at a temperature in the range of
�Tf

e /4, Tf
e /2� in intrinsic bulk GaAs �Ref. 28� and at a tem-

perature around the hole Fermi temperature Tf
h in impurity-

free p-type GaAs QWs where the hole density is much
higher than the electron density.25 In fact, this feature appears
in the electron-spin relaxation of strong scattering system
with the DP relaxation mechanism being dominant when the
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Coulomb scattering �either the intraband electron-electron or
the interband electron-hole Coulomb scattering� is the main
scattering. When the intraband electron-electron Coulomb
scattering dominates,18,19,28 the peak appears around the
crossover from the degenerate to nondegenerate regime of
electrons. When the interband Coulomb scattering domi-
nates, the peak appears around the crossover from the degen-
erate to nondegenerate regime of holes in p-type systems.25

It is known that in the strong scattering system, strength-
ening scattering can suppress the inhomogeneous broadening
and tends to prolong the spin relaxation time within the DP
relaxation mechanism16,18,25–28 and that the Coulomb scatter-
ing rate has a T2 dependence in the degenerate regime but a
T−1�T−3/2� dependence in the nondegenerate regime in the
two �three�-dimensional carrier systems.17,41 Thus with the
increase in T, the dominant Coulomb scattering tends to
cause first an increase and then a decrease in the electron-
spin relaxation time. Meanwhile, the increase in inhomoge-
neous broadening with T tends to cause a monotonous de-
crease in the spin relaxation time and thus a shift of the peak

in the �-T curve toward the lower temperature. The magni-
tude of the latter effect depends on the form of the momen-
tum dependence of the DP term. When the DP term mainly
depends on the momentum linearly �cubically�, the latter ef-
fect is moderate �strong�. The above scenario also holds in
the hole spin relaxation, such as the case considered here.
The hole system in Si/SiGe QWs is in the strong scattering
limit where the Coulomb scattering dominates �as discussed
later� and the linear part of the Rashba term is more impor-
tant, thus the peak in the �-T curve is obvious near Tf

h. How-
ever, when the hole density is low enough and thus holes are
in the nondegenerate regime throughout the temperature re-
gime under consideration, the spin relaxation time decreases
monotonously with temperature, as shown by the solid curve
in Fig. 4.

A similar phenomenon is expected to happen in the den-
sity dependence of spin relaxation time, as the Coulomb
scattering rate has an Nh

−1 �Nh
−2/3� dependence in the degen-

erate regime while an Nh dependence in the nondegenerate
regime in two �three�-dimensional systems.17,41 This is ex-
actly the case,25,28 as shown by Fig. 5. Nevertheless, when
the temperate is high enough and thus holes are in the non-
degenerate regime throughout the density range under con-
sideration, the spin relaxation time increases monotonously
with density, as shown by the dotted curve in Fig. 5.

In Fig. 6 the spin relaxation time against temperature with
different impurity densities is plotted. It shows that adding
impurities reduces spin relaxation rate. That is because the
inhomogeneous broadening is suppressed by introducing
hole-impurity scattering in the strong scattering
limit.16,18,26–28 With the increase in impurity density Ni, the
hole-impurity scattering, which is insensitive to T in low-
temperature regime, becomes important. Thus the peak in
�-T curve due to the Coulomb scattering becomes less pro-
nounced or even disappears.18,28 That is the reason why the
peak is easier to be observed experimentally in high-mobility
samples.18,19 It is also noted that the impurity scattering has
marginal effect on spin relaxation near room temperature,
which is understood by recalling that the impurity scattering
rate decreases with carrier energy.42

To understand the relative importance of different scatter-
ings in spin relaxation, we calculate the spin relaxation time
with different scatterings included and show its density de-
pendence in Fig. 7. T is taken to be 300 K. In Fig. 7�a� the
impurity density Ni=0. The solid curve corresponds to the
case with all the scatterings �the hole-hole Coulomb �h-h�,
hole-optical phonon �h-op�, and hole-acoustic phonon �h-ap�
scatterings� included. The dashed, dotted, and chain curves
correspond to the cases without the hole-optical phonon,
hole-acoustic phonon, and hole-hole Coulomb scattering, re-
spectively. By comparing these four curves, one finds that:
�i� even with T=300 K, the hole-hole Coulomb scattering
plays a much more important role than the hole-phonon scat-
tering �in addition, similar calculations show that when
T�200 K, the hole-phonon scattering can be completely ig-
nored�; �ii� the acoustic phonon scattering plays a relatively
more efficient role than the optical phonon scattering �that is
because the optical phonon energy 	�op is high �63 meV�
while the hole Fermi energy is low due to the large in-plane
effective mass �0.27m0��. In fact, the hole system under con-
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FIG. 7. �Color online� Spin relaxation time � against hole
density Nh with different scatterings included. T=300 K and
E=300 kV /cm. �a� Solid curve: with all scatterings �the hole-hole
Coulomb, the hole-optical phonon, and the hole-acoustic phonon
scatterings� included; Dashed curve: without the h-op scattering;
dotted curve: without the h-ac scattering; chain curve: without the
h-h scattering. All the four cases are calculated with impurity den-
sity Ni=0. �b� Solid curve: with the h-h, h-op, and h-ac scatterings;
dashed curve: same as the solid curve with the additional hole-
impurity scattering �Ni=1010 cm−2� included; chain curve: with the
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with the additional hole-impurity scattering �Ni=5�108 cm−2�
included.
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sideration is in the strong scattering limit generally but falls
into the weak scattering limit when the hole-hole Coulomb
scattering is removed artificially. �When T=300 K here, the
momentum relaxation time �p due to the relatively stronger
hole-acoustic phonon scattering is about 2.1 ps while the
mean spin precession rate16,18,26 �
�l�� is about
0.52–0.56 ps−1 with the change in hole density. Thus with-
out the hole-hole Coulomb scattering, �p�
�l���1, indicating
the weak scattering limit.� This feature can be justified by
comparing two groups of curves in Fig. 7�b�. One group with
the hole-hole Coulomb scattering �the solid and dashed
curves� indicates that adding a small amount of impurities
helps increasing �, corresponding to the strong scattering
case, while the other group without the hole-hole Coulomb
scattering �the chain and dotted curves� shows an inverse
effect �i.e., a decrease in �� with adding quite a small amount
of impurities, which typically happens in the weak scattering
limit.16,26

Finally, we investigate the electric field dependence of
spin relaxation. The hole spin relaxation time � against elec-
tric field E with different temperatures is plotted in Fig. 8.
For each temperature, we choose the appropriate range of
electric field to ensure that the effect of second hole subband
is irrelevant. It is shown that with the increase in electric
field, the spin relaxation time is shortened due to the
strengthened spin-orbit coupling. Besides, as a comparison to
the features of spin relaxation with E=300 kV /cm, we also
present the hole density and temperature dependences of spin
relaxation with E=600 kV /cm in Fig. 9. One finds that the
peak in hole density/temperature dependence of the hole spin
relaxation time �the dashed/solid curve in Fig. 9� due to the
Coulomb scattering still exists. Moreover, the location of the
peak remains almost the same despite the change in the gate
voltage. This indicates that when the linear part of the
Rashba term is important, the trend of variation in the hole
spin relaxation time mainly associates with that of the Cou-
lomb scattering strength around the crossover between the
degenerate and nondegenerate regimes, whereas the increase
in the inhomogeneous broadening with increasing
temperature/hole density is moderate �even with the increase
in the spin-orbit coupling coefficients by the larger gate volt-
age�.

B. Spin relaxation in Ge/SiGe QWs

The hole spin relaxation in Ge /Si0.3Ge0.7 QWs is also
investigated. The HH0 holes have a distribution along the z
direction as shown in Fig. 1�b� by the chain curve when the
electric field is E=300 kV /cm. In Fig. 10 the spin relaxation
time � against temperature T with electric field
E=300 kV /cm �at which 	

2 �=−6.06 meV nm3, as shown in
Fig. 2�b�� is plotted. It is shown that the hole spin relaxation
time in Ge/SiGe QWs is much shorter than that in Si/SiGe
QWs. That is because the inhomogeneous broadening in Ge/
SiGe QWs is quite strong, as the spin-orbit interaction in
Ge/SiGe QWs is relatively stronger �in consistence with the
heavier Ge element� and the Rashba term depends on mo-
mentum cubically. Apart from the fast spin relaxation, a new
phenomenon emerges—when the hole density is relatively
high not only a peak in �-T curve is present but also a valley
before the peak is observed.
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FIG. 8. �Color online� Spin relaxation time � against electric
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Unlike the case in Si/SiGe QWs where the peak is close
to the Fermi temperature �Fig. 4�, the peak here is located at
a temperature about Tf

h /2 �e.g., Tf
h�170 K with density

Nh=4�1011 cm−2�. As discussed previously about the spin
relaxation in Si/SiGe QWs, the Coulomb scattering strength
first increases and then decreases with increasing tempera-
ture �accompanying the crossover from the degenerate to
nondegenerate regime�, tending to cause a peak in the �-T
curve around the Fermi temperature in the strong scattering
limit. However, the enhancement of inhomogeneous broad-
ening with T is strong here as the Rashba term depends on
momentum cubically �unlike the case in Si/SiGe QWs where
the linear part of the Rashba term is important�. Thus with
both effects accounted, the shift of the peak toward a lower
temperature is expected. By comparing the spin relaxation in
high-temperature regime of the three curves with Ni=0 in
Fig. 10, one finds that the spin relaxation time � decreases
with hole density Nh monotonically, which is different from
the case in Si/SiGe QWs �indicated by the dotted curve in
Fig. 5�. That is because the Rashba term here depends on the
momentum cubically and the inhomogeneous broadening in-
creases with density strongly with an Nh

3 dependence.
While the peak is associated with the crossover from the

degenerate to nondegenerate regime, the valley in Fig. 10 is
actually related to the crossover from the weak to strong
scattering limit. When the temperature is low enough and the
density is high, the hole system is highly degenerate �due to
the high Fermi energy� and thus the dominant Coulomb scat-
tering becomes very weak. The hole system then falls into
the weak scattering limit. Therefore with the increase in tem-
perature from the very low temperature, the strengthening of
scattering reduces the spin relaxation time first, until the
crossover to the strong scattering system, and then increases
the spin relaxation time—this leads to a valley in the �-T
curve in the degenerate regime. The dotted curve in Fig. 10
stands for the case with the same hole density as the chain
curve but with a small amount of impurities. It is observed
again that introducing a weak impurity scattering in the weak
�strong� scattering limit leads to a decrease �an increase� in
the spin relaxation time.16,26

The electric field dependence of spin relaxation is also
investigated with the hole spin relaxation time � against elec-
tric field E under different temperatures plotted in Fig. 11. It
is shown that the spin relaxation time decreases with electric
field slowly in the large electric field regime, corresponding
to the marginal electric field dependence of the spin-orbit
coupling strength in the large electric field regime �refer to
the dotted curve in Fig. 2�b��.

IV. CONCLUSION

In conclusion, we have investigated the hole spin relax-
ation in �001� strained asymmetric Si /Si0.7Ge0.3
�Ge /Si0.3Ge0.7� QWs with large gate voltage in this work. We
focus on the situations with only the lowest hole subband
being relevant. The effective Hamiltonian of the lowest hole
subband is obtained by the subband Löwdin perturbation
method in the framework of the six-band Luttinger k ·p
model with sufficient basis functions included for the con-

vergence of calculation. Due to the biaxial strain, the lowest
subband in Si/SiGe QWs is a light-holelike state while that
in Ge/SiGe QWs is a heavy-hole state.

We apply the fully microscopic KSBE approach to inves-
tigate the hole spin relaxation in Si/SiGe �Ge/SiGe� QWs. By
means of this approach, all the relevant scatterings, such as
the hole-phonon, hole-impurity, and the hole-hole Coulomb
scatterings can be taken into account explicitly. It is discov-
ered that the hole-phonon scattering is very weak compared
to the hole-hole Coulomb scattering, even at high tempera-
tures. This makes the hole-hole Coulomb scattering to play a
very important role in spin relaxation. It leads to a peak of
spin relaxation time in both the temperature- and carrier-
density dependences in Si/SiGe QWs. The peak is associated
with the crossover from the degenerate to nondegenerate re-
gime of hole system and thus locates around the crossover
point. However, the increase in inhomogeneous broadening
with temperature/hole density tends to lead to a shift of the
peak toward a lower temperature/hole density. The magni-
tude of the shift depends on the form of the momentum
dependence of the Rashba term. For Si/SiGe �Ge/SiGe�
QWs, the Rashba term mainly �only� depends on momentum
linearly �cubically� and thus the shift of the peak is marginal
�obvious�. In addition, in contrast to the GaAs QWs where
the peak in the temperature dependence of the electron-spin
relaxation can only be observed for high-mobility samples
with low carrier density,18 the peak predicted in Si/SiGe �Ge/
SiGe� QWs can be observed even at high carrier density,
thanks to the weak hole-phonon scattering. The Coulomb
scattering also leads to a valley at low temperature in the
temperature dependence of hole spin relaxation time in Ge/
SiGe QWs with high hole density, which is related to the
crossover from the weak to strong scattering limit. The hole
spin relaxation time can be effectively influenced by the
hole-impurity scattering, tending to weaken the effect of
Coulomb scattering mentioned above with the increase in
impurity density. Apart from the abundant temperature- and
hole/impurity-density dependences, the spin relaxation time
decreases with the gate voltage, accompanying the increase
in spin-orbit coupling strength.

The hole spin relaxation time, depending on the tempera-
ture, carrier/impurity density, and gate voltage, is found to be
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FIG. 11. �Color online� Spin relaxation time � against electric
field E at different temperatures. The hole density is
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on the order of 1–100ps �0.1–10 ps� in Si/SiGe �Ge/SiGe�
QWs within the scope of our investigation. These time scales
are much shorter than the electron-spin relaxation time in
Si/SiGe QWs �on the order of 10−7–10−5 s�.6–8 A hole spin
relaxation time on the order of 0.1–1 ps was theoretically
reported in p-doped GaAs QWs �with temperature being
100–300 K, hole density being 0.5–4.5�1011 cm−2, impu-
rity density being 0–1 times hole density and gate voltage
induced electric field being about 100 kV/cm�26 and a hole
spin relaxation time of 4 ps was experimentally observed in
n-doped GaAs QWs �at 10 K�.43 Thus, generally, the hole
spin relaxation time in Si/SiGe �Ge/SiGe� QWs is longer
than �comparable with� the hole spin relaxation time in GaAs
QWs. It should be pointed out at last that the strain in Si/
SiGe �Ge/SiGe� QWs plays an important role in spin relax-
ation, as it shifts the energy levels of the light-hole states
away from the heavy hole ones. If the strain is removed �e.g.,
in SiO2 /Si or SiO2 /Ge inversion layer�, the coupling be-
tween the light-hole and heavy-hole states are strengthened
and the hole spin relaxation should be enhanced.
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APPENDIX: SOLUTION OF THE ENVELOPE FUNCTIONS
���n

The envelope functions ���n�z� ��=1,2 ; �=h , l ,s�, sat-
isfy the eigenequation

H0���n�z� = En
������n�z� �A1�

with H0=HL
�0�+H�+V�z�I6. ��hn�z� has only one component

�n
�h�, satisfying � 	2

2mz
�h�

d2

dz2 +V�z���n
�h��z�=En

�h��n
�h��z� with

mz
�h�=m0 / �A−B�, which can be solved directly. The envelope

functions ���n�z� ��= l ,s� have two components with �n
��1�

and �n
��2� satisfying

H0
�ls���n

��1��z�
�n

��2��z�
� = En

�����n
��1��z�

�n
��2��z�

� . �A2�

Here

H0
�ls� =	�A + B�

	2

2m0

d2

dz2 − �2B
	2

2m0

d2

dz2

− �2B
	2

2m0

d2

dz2 A
	2

2m0

d2

dz2 − � 

+	 E� −

E�

�2

−
E�

�2

E�

2

 + V�z�I2 �A3�

with the second term representing the contribution from the

biaxial strain.31–33,35 E�=−2b�2c12 /c11+1��, where c11 and
c12 are the elastic constants, b is the deformation-potential
constant, and � is the relative lattice mismatch in the
interface.4,35 E� is 95.8 meV �−115.7 meV� for Si /Si0.7Ge0.3
�Ge /Si0.3Ge0.7� QWs. � is the SO splitting. The solutions
with ��n

��1��z� ��n
��1��z��� ��n

��2��z� ��n
��2��z�� correspond to the

LH-like states and thus � equals to l. Otherwise the solutions
are deemed as the SO-like states with �=s.

An unitary transformation which diagonalizes the strain

term in Eq. �A3� is performed on Eq. �A2�, leading to H̃0
�ls� as

H̃0
�ls� = U−1H0

lsU =	
	2

2m1

d2

dz2 + E1 −
	2

2m�

d2

dz2

−
	2

2m�

d2

dz2

	2

2m2

d2

dz2 + E2

 + V�z�I2.

�A4�

Here

U = �
1

�N1

1
�N2

� 2

N1
�1 −

E1

E�
� � 2

N2
�1 −

E2

E�
� � �A5�

is the unitary matrix, with E1= 1
2 � 3

2E�−�
+�9E�

2 /4+�E�+�2�, E2= 1
2 � 3

2E�−�−�9E�
2 /4+�E�+�2�,

and N1,2=1+2�1−E1,2 /E��2. m1, m2, and m� in Eq. �A4� are

m1 = m0�A + B�1

2
+

9E�/4 + �/2
�9E�

2/4 + �E� + �2��−1

, �A6�

m2 = m0�A + B�1

2
−

9E�/4 + �/2
�9E�

2/4 + �E� + �2��−1

, �A7�

m� = m0
E�

�9/4 + �/E� + ��/E��2

�2�B
. �A8�

It is noted that expressions �A6�–�A8� about the effective
masses are valid for both the Si/SiGe QWs �with E��0� and
Ge/SiGe QWs �with E��0� while those in Ref. 14 �Eqs. �5�
and �6�� equal to Eqs. �A6�–�A8� only when E��0, i.e., they
are valid only for Si/SiGe QWs.

H̃0
�ls� can be separated into the diagonal H̃0D

�ls� and off-

diagonal H̃0O
�ls� parts. In the nondegenerate perturbation

method, H̃0O
�ls� is treated as the perturbation term. The

eigenequation of H̃0D
�ls� can be solved directly, with the eigen-

values En1 and En2 and the corresponding eigenfunctions

��n1�z�
0

� and � 0

�n2�z�
� �A9�

determined by the Schrödinger equation
� 	2

2m�

d2

dz2 +E�+V�z���n��z�=En��n��z� ��=1,2�. In this paper,
the term “unperturbed subbands” mentioned in the discus-
sion of perturbation �exact diagonalization� method actually

means the eigenstates of H̃0D
�ls�, i.e., the states with energy

levels being En1,2 and wave functions being Eq. �A9�.
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To the first order of H̃0O
�ls�, the perturbed eigenvalues are

En
�1�=En1 and En

�2�=En2, and the corresponding perturbed
eigenfunctions are

	 �n1�z�


n�

wn�2n1

En1 − En�2
�n�2�z� 
 �A10�

and

	
n�

wn�1n2

En2 − En�1
�n�1�z�

�n2�z�

 , �A11�

respectively. Here wn�n���=− 	2

2m� �−�
+�dz�n�

d2�n���
dz2 �� ,��=1,2�.

Finally the eigenvalues En
��� of H0

�ls� are En
�1� and En

�2�, and the
corresponding eigenfunctions ��n

��1��z� ,�n
��2��z��T are

U	 �n1�z�


n�

wn�2n1

En1 − En2
�n�2�z� 
 �A12�

and

U	
n�

wn�1n2

En2 − En1
�n�1�z�

�n2�z�

 . �A13�

It is noted that the nondegenerate perturbation method is
valid when only the two subbands with energy E01 and E02

�i.e., the lowest unperturbed subbands corresponding to the
LH-like and SO-like hole states, respectively� are accounted.
Otherwise, when more subbands are included, the divergence
may occur in the calculation if two energy levels En1 and
En�2 are close to each other as there are terms proportional to

1
En1−En�2

in the envelope functions ��xn�z� �x= l and s� �refer
to Eqs. �A12� and �A13��. This divergence goes to the spin-
orbit coupling coefficients � and �, and finally the spin
splitting.

For the sake of convergence of the envelope functions and
thus the spin-orbit coupling coefficients and spin splitting,
sufficient subbands have to be considered. Thus, instead of
the nondegenerate perturbation method, we apply the exact

diagonalization method to obtain the eigenstates of H̃0
�ls� with

sufficient basis functions constructed by the two sets of func-
tions in Eq. �A9� �2 �20� of each set for Si/SiGe �Ge/SiGe�
QWs�.
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